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Abstract

Fetal cardiovascular monitoring is essential in assess-
ing high-risk gestations during the third trimester. With
available technologies and signal processing methods, se-
veral congenital heart diseases can be detected prena-
tally, and adequate treatment can be prepared in advance.
Phonocardiography is one such method, with the advan-
tage of being inexpensive and convenient compared to
other commercially available solutions. In this paper, an
easily adaptable process is introduced to classify fetal S1
as regular or split heart sounds. The process also includes
a simple heart sound segmentation, based on the Teager-
Kaiser energy operator and a moving average filter. Mul-
tiple signal features were evaluated, including time do-
main, frequency domain, and time-frequency information.
The feature-space was constructed by principal compo-
nent analysis with different feature compositions and clas-
sified using k-means clustering. Classification accuracy
was evaluated on a clinical recording where 1874 heart
sounds had been detected. The recording was labelled by
an expert with 892 regular and 762 split S1 and 220 non-
decidable or noisy segments, which served as the ground
truth. The highest overall accuracy achieved with individ-
ual features was 90.7%. A possible improvement upon this
design using multiple classification stages based on addi-
tional features is also described.

1. Introduction

1.1. Motivation

Monitoring the development of the fetal heart during
gestation is crucial to diagnose congenital heart diseases
(CHD). With earlier detection of anomalies, possible treat-
ment can be planned in advance enabling a better long-
term clinical outcome. The state-of-the-art CHD diagno-
sis methods make use of an ultrasound (US) technique
called echocardiography. However, this approach requires
a trained professional to perform the measurement, and the

Figure 1: Two fetal heart sounds with regular S1 and their
time-frequency representation

device itself is more expensive than instruments with other
modalities. Fetal-phonocardiography (fPCG) is often used
to measure fetal heart rate (FHR) but the recorded signal
carries enough information to detect some CHDs and re-
cently became a popular research topic. In fPCG signals
extraneous noises called murmurs and heart sound split-
ting could indicate certain CHDs, for example valve steno-
sis or Ebstein’s anomaly. An example for regular heart
sounds and heart sounds with split S1 can be seen in Fig-
ure 1 and 2 respectively. Data acquisition is possible at the
24th week of gestation, when the fetal heartbeat becomes
strong enough to be detected. For split heartsounds most
published datasets and methods focus postnatal record-
ings, meaning it is still important to acquire more data and
knowledge about fetal cases.

1.2. Literature overview

The split detection can be divided into two smaller tasks,
detecting and segmenting the heart sounds and their classi-
fication. For accurate segmentation an electrocardiogram
(ECG) recorded simultaneously with the PCG could be
used, like in the process described by Wang et al. [1].
Where an averaged S1 signal obtained by utilizing QRS
detection on the ECG signal. This technique is not feasible
in fetal PCG since it requires multiple sensors and a higher
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Figure 2: Two fetal heart sounds with split S1 and their
time-frequency representation

Figure 3: The process overview

technical proficiency from the end user. Additionally the
electrical signal from the maternal heart could overpower
the smaller fetal signal, and suppressing it could prove dif-
ficult. But recently, devices with simultaneous phono- and
electrocardiogram recording capabilities became available
[2] and these could be applied for fetal recordings in the
future. Other heart sound detection methods where only
the PCG data is used also had promising results [3]. Here
Sava et al. used a MP based method combined with cross-
correlation for accurate heart sound detection. In recent
years, a significant development in PCG abnormality de-
tection approaches was the PhysioNet Challenge in 2016
[4], where the different teams were tasked with classify-
ing abnormal PCG signals. For this challenge Goda and
Hajas developed a classification method based on a seg-
mented PCG signal and a combination of time, frequency
and wavelet-envelope features with singular value decom-
position (SVD) and a support vector machine (SVM) clas-
sification [5].

2. Methods and materials

Our process consisted of four main stages, being prepro-
cessing, heart sound segmentation, feature extraction and
clustering. A schematic for this can be seen in Figure 3,
the different stages marked with colors. In the preprocess-
ing stage the DC offset was removed, and the signal was
rescaled to the interval of [-1,1]. Then an infinite impulse
response (IIR) band-pass filter with a central frequency of
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Figure 4: The energy of the signal. (a) Filtered signal (b)
Smoothed TK energy

30 Hz and a Q-factor of 3 was applied to remove some of
the noise present in the signal and to enhance the preva-
lence of the S1 sounds. This filtered signal (seen in Fig-
ure 4a) was only used for heart sound detection, the later
stages used the segments from the original signal in order
to circumvent any unwanted artifacts introduced by this fil-
tering.

2.1. Heart Sound segmentation

Since our focus was to examine the S1 sounds, the de-
tection and segmentation steps were optimized for those
sounds only. No other parts were included in the classi-
fication. A simple detection algorithm was implemented
based on the discrete Teager-Kaiser (TK) energy opera-
tor [6] of the signal. In the presented process the discrete
TK energy operator was extended with a smoothing mov-
ing mean filter with a 60 ms window, an example result
of this extension can be seen in Figure 4b. Peaks in the
smoothed energy corresponded with impulses in the sig-
nal, and a local maximum search was done to locate these
peaks. To reduce the amount of false positive detections,
physiology-based parameters were introduced. Firstly, the
minimal beat-to-beat time for the minimal difference be-
tween the detections, which was set to 270 ms, giving an
upper bound of 222 bpm for the heart rate. The mean pe-
riodicity of the peaks was then calculated and used as a
coarse estimate for fetal heart rate. This was done to re-
move statistical outliers with other periodicities. Finally
the local maximum energy values were compared and the
statistical outliers removed, similarly to the previous step.
In both cases an outlier was defined as a value with more
than three scaled median absolute deviations from the me-
dian value. The remaining local maxima were considered
S1 events and a time-window with a constant size was ex-
tracted from the original signal around these timepoints.
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Figure 5: The exploratory clustering phase with first 3 principal components shown. Orange represents the supposed
regular, yellow the supposed split, and black the rejected datapoints. Other colors are smaller unknown clusters (a) Raw
signal, (b) Hilbert envelope, (c) Instantaneous phase, (d) Fourier spectrum, (e) CWT

2.2. Examined features

The features for each segment had three types: time do-
main, frequency domain and time-frequency domain. The
time domain features included the raw signal, the enve-
lope, and the instantaneous phase. The latter two were
calculated with the help of Hilbert transformation [7]. Fre-
quency domain information was obtained from the Fourier
transform of the signal. The magnitude of the resulting
complex coefficients gave the spectrum of the segment.
This feature was included because previously it was suc-
cessfully used for the characterization of split heart sounds
[5]. The final type of features was the continuous wavelet-
transform (CWT) [8] of the segment taken with the Morlet
wavelet family, since they give a good basis for general
signals. The resulting coefficient matrix was flattened to
a vector so that the further processing steps could be the
same as with the other features. The next step in the pro-
cessing was a principal component analysis (PCA) to ex-
tract prominent differences and to reduce the dimensional-
ity of the data. The loadings for each feature was calcu-
lated with the SVD method.

2.3. Exploratory clustering

To choose the most appropriate classification method
and to validate the split classification abilities of a certain
feature, an exploratory clustering phase was performed,
where the size, number, and the separability of the clus-
ters were observed. This was done with a general density
based clustering method (DBSCAN) on each feature repre-
sentation individually. In order to compensate for the curse
of dimensionality, the standard Euclidean metric was mod-
ified in the distance calculation. This distance metric is
defined as:

d(a,b)=

√√√√ N∑
n=1

(an − bn)2 w(n), (1)

where a and b are both N dimensional vectors with an and
bn being their nth coordinates. This d function satisfies all
properties for a metric function if and only if w ̸≡ 0. In
our case the weight function was defined as:

w(n) = e
−n
λ , (2)

where the parameter λ is used as a leniency term for the
higher dimensions. Meaning a higher λ value represents a
less strict weight function. In the presented case, a λ value
of 3 was chosen, the DBSCAN parameters were optimized
for the given feature space. The result of this clustering
can be seen in Figure 5.

3. Results

Evaluation of the different feature representations was
done on a manually labeled dataset, consisting of three
classes: normal, split, and undecidable. The dataset con-
tained in total 1874 segments, from which were 892 regu-
lar, 762 split, 220 undecidable segments. These segments
were extracted from a 20 minute long fPCG recording,
from a particular subject, where S1 split was observed, us-
ing the previously described (2.1) segmentation algorithm,
which was validated with different, shorter recordings with
labelled heart sounds. This segmentation method was cho-
sen to build the dataset, since a satisfactory public dataset
could not be found at the time of development, and so that
a full implementation could be modelled. For classifica-
tion, k-means clustering was used since the exploratory
segmentation revealed that there were two main clusters
in all representations and these clusters were linearly sep-
arable, as seen in Figure 5. The accuracy calculation was
done in the following way:

Se =
Ss

Ss+Rs
, Sp =

Rr

Rr + Sr
, Acc =

Se+ Sp

2
(3)

These terms are defined in Table 1. The features were ex-
amined first on their classification capabilities, these can
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Labeling Clustering
Regular Split

Manual Regular Rr Sr
Split Rs Ss

Table 1: Definition of the terms used in accuracy calcula-
tion

be seen in Table 2. Then with the same dataset their run-
time performance was measured in the online version of
MATLAB [9], this result can be seen in Table 3.

4. Conclusion

In this paper we proposed an automatic method to detect
split S1 sounds from an fPCG recording. We showed that a
simple heart sound segmentation method could prove to be
satisfactory if the signal contains enough elements and the
most prevalent feature is the examined phenomenon. As
a possible improvement, we can implement multiple clas-
sification stages with different features. For example by
using the specificity of the Hilbert envelope to improve the
Fourier spectrum the overall accuracy increased to 0.912.
Currently, the process as described here, is not yet capa-
ble of automatic diagnosis or as a pre-screening tool, but
could prove useful in aiding medical experts in their deci-
sions. In the future we would like to improve our dataset
with more subjects and other pathological cases, enabling
more significant results. The process could be further re-
fined with a more sophisticated segmentation method and
including other features.

Feature Se Sp Acc
Raw signal 0.908 0.777 0.843
Hilbert envelope 0.745 0.956 0.851
Instantaneous phase 0.888 0.771 0.829
Fourier spectrum 0.953 0.861 0.907
CWT 0.860 0.892 0.876

Table 2: Accuracy measures for each feature representa-
tion. Best results marked in bold

Feature Average running time
Raw signal 1.86 s (baseline, x)
Hilbert envelope 2.00 s (1.08x)
Instantaneous phase 2.15 s (1.16x)
Fourier spectrum 0.46 s (0.25x)
CWT 39.44 s (21.17x)

Table 3: Average time taken in seconds for feature extrac-
tion for our dataset. Best result marked in bold
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